مقایسه مدل های شبکه عصبی با مدل سری زمانی باکس- جنکینز در پیش بینی شاخص کل قیمت سهام بورس اوراق بهادار تهران
نویسندگان
چکیده
پژوهش حاضر به مقایسه مدلهای شبکه عصبی و سریزمانی در پیشبینی قیمت شاخص سهام میپردازد. بدین جهت سه مدل از شبکههای عصبی(پروسپترونی چند لایه ،پایهای شعاعی و رگرسیونی) و یک مدل از مدلهای سریزمانی (باکس- جنکینز) مورد بررسی قرار گرفته اند. شاخص کل قیمت سهام بازار بورس تهران در بازه زمانی ابتدای فروردین 1384 تا انتهای اسفند 1388 به عنوان جامعه آماری انتخاب شده است. به منظور داشتن معیاری برای مقایسه از چهار معیار خطای ریشه میانگین مربع خطا ،میانگین قدر مطلق درصد خطا، میانگین قدر مطلق خطا وضریب تعیین استفاده شده است. برای آموزش مدل ها از 80 درصد داده ها معادل 913 روز از اول فروردین سال 1384تا 31 فروردین سال 1388 استفاده شده و مدلهای طراحی شده قادر هستند 299روز آتی را پیشبینی نمایند.برای ساختن 3 مدل شبکه عصبی از محیط نرم افزار matlab و برای ساختن مدل سریزمانی باکس-جنکینز از نرم افزارهای spss وeviews استفاده شده است. نتایج حاصله حاکی از آن است که 3 مدل شبکه عصبی از لحاظ 4 معیار خطا نسبت به مدل سریزمانی آریما برتری دارد.از طرفی از میان 3 مدل شبکه عصبی به کار رفته به ترتیب، مدل شبکه عصبی پایهای شعاعی و پس از آن مدل شبکه عصبی پروسپترون چند لایه بهترین عملکرد و شبکه عصبی رگرسیونی بدترین عملکرد را دارا می باشند.
منابع مشابه
ارائه مدل پیش بینی شاخص کل قیمت سهام با رویکرد شبکه های عصبی (مطالعه موردی: بورس اوراق بهادار تهران)
هدف تحقیق حاضر ارائه مدل پیشبینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح MLP با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان میدهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیشبینی شاخص ...
متن کاملارائه مدل پیش بینی شاخص کل قیمت سهام با رویکرد شبکه های عصبی (مطالعه موردی: بورس اوراق بهادار تهران)
هدف تحقیق حاضر ارائه مدل پیشبینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح mlp با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان میدهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیشبینی شاخص ...
متن کاملپیش بینی بازده سهام در بورس اوراق بهادار تهران: مدل شبکه های عصبی مصنوعی و مدل چند عاملی
این تحقیق به پیش بینی پذیری رفتار بازده سهام در بورس اوراق بهادار بوسیله مدل خطی عاملی و شبکه های عصبی مصنوعی می پردازد. جهت آزمون این مساله، قیمت روزانه سهام شرکت توسعه صنایع بهشهر به عنوان نمونه انتخاب شده است. متغیرهای مستقل (ورودی های) تحقیق، پنج متغیر کلان اقتصادی، یعنی شاخص کل قیمت بورس تهران، نرخ ارز (دلار) در بازار آزاد، قیمت نفت، قیمت طلا می باشد. برای برازش مدل عاملی از رگرسیون خطی چن...
متن کاملمقایسه دقت پیش بینی سود توسط مدیریت با سری های زمانی باکس-جنکینز
در این تحقیق تلاش محقق بر این است که برای پیش بینی EPS شرکتها، مشهورترین روش های پیش بینی را در مقایسه با پیش بینی های مدیریت در بودجه شرکتها مورد مقایسه قرار دهد. بدین منظور از بین روش های گوناگون پیش بینی، مشهورترین آنها (روش باکس-جنکینز) انتخاب و برمبنای روشهای اقتصاد سنجی، مدل مناسب برازش میشود. بدیهی است براساس روشهای صحت سنجی و آزمونهای اقتصاد سنجی، مدل فوق بایستی تایید گردد. در این حا...
متن کاملمدل فازی عصبی با ترکیب الگوریتم ژنتیک جهت پیش بینی قیمت سهام در صنعت خودرو در بورس اوراق بهادار تهران
تعیین زمان بهینه و قیمت مناسب خرید و فروش سهام نقش بسزایی در تصمیمات سرمایهگذاری در بازار سرمایه و سود و زیان سرمایهگذار دارند. میتوان از سیستمهای هوشمند غیرخطی همچون شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک برای پیشبینی تغییرات قیمت سهام استفاده نمود. در این مقاله به طراحی و ارائه یک مدل پیشبینی قیمت سهام با استفاده از سیستم استنتاج عصبی فازی انطباقی و ترکیب آن با الگوریتم ژنتیک...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مهندسی مالی و مدیریت اوراق بهادارناشر: دانشگاه آزاد اسلامی واحد تهران مرکزی
ISSN 2251-9165
دوره 3
شماره 11 2012
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023